Что называется реакцией ионного обмена. Реакции ионного обмена и условия их протекания. Реакции обмена между растворами электролитов


Задача 1 . Рассчитать концентрацию ионов водорода в растворе HCN (С м = 10 -3 М), если = 4,2∙10 -3 .

Решение: Диссоциация цианистоводородной кислоты протекает по уравнению HCN ↔ H + + CN - ; концентрации ионов и в растворе равны между собой (т.к. Н+ : С N - = 1:1, где

 - стехиометрические коэффициенты) т.е. = = C м, моль/л; Тогда = = 4,2∙10 -3 ∙ 10 -3 = 4,210 -7 моль/л.

Решение : Гидроксид аммония диссоциирует следующим образом:

NH 4 OH ↔ NH 4 + + OH - , константа диссоциации имеет вид

К д =;

концентрации ионов аммония и гидроксида совпадают ( (NH 4 +) : (OH -) = 1:1), обозначим их за х :

= = х моль/л , тогда выражение для К д примет вид

1,810 -5 = х 2 / 0,01-х . Считая, что х << С м, решаем уравнение

1,810 -5 =x 2 / 0,01, относительно х : х =
=4,2∙10 -4 моль/л; = 4,2∙10 -4 моль/л.

Концентрации ионов водорода и гидроксида связаны через ионное произведение воды К w = =10 -14 , выразим концентрацию ионов водорода = K w / и рассчитаем её значение:

110 -14 /4,210 -4 = 2,310 -11 моль/л.

Задача 3 . Определить рН раствора НСl ( =1), если С м =2∙10 -3 М

Решение: Диссоциация соляной кислоты протекает по уравнению

HCl  H + + Cl - , концентрация ионов водорода = C м =1∙2∙10 -3 = =2∙10 -3 моль/л. Водородный показатель рН = - lg = - lg2∙10 -3 = 2,7.

Задача 4 . Определить молярную концентрацию гидроксида аммония, если рН=11, а Кд=1,8∙10 -5 .

Решение: Концентрация ионов водорода =10 - pH =10 -11 моль/л. Из ионного произведения воды определяем концентрацию = K w / = 10 -14 /10 -11 =10 -3 моль/л. Гидроксид аммония - слабое основание и характеризуется уравнением реакции диссоциации

NH 4 OH ↔ NH 4 + + OH - . Выражение для константы диссоциации

К д =.

из закона Оствальда следует, что = = ∙C м, а К д = 2 С м. Объединяя уравнения, получимС м = 2 /K д = 10 -6 / 1.8∙10 -5 = 0,056 моль/л

Произведение растворимости

Вещества, в зависимости от своей природы, обладают различной растворимостью в воде, которая колеблется от долей миллиграмма до сотен граммов на литр. Трудно растворимые электролиты образуют насыщенные растворы очень маленьких концентраций, поэтому можно считать, что степень их диссоциации достигает единицы. Таким образом, насыщенный раствор труднорастворимого электролита представляет собой систему, состоящую из собственно раствора, находящегося в равновесии с осадком растворенного вещества. При постоянных внешних условиях скорость растворения осадка равна скорости процесса кристаллизации: К n А mn К + m + m A - n (1)

осадок раствор

Для описания этого гетерогенного равновесного процесса используют константу равновесия, называемую произведением растворимости ПР = n m , где и – концентрации ионов в насыщенном растворе (моль/л). Например:

AgCl= Ag + +Cl - , ПР = ; здесь n=m =1.

PbI 2 = Pb 2+ +2I - , ПР = 2 ; здесь n =1, m =2.

ПР зависит от природы растворенного вещества и температуры. ПР является табличной величиной. Зная ПР, можно вычислить концентрацию насыщенного раствора вещества, а также оценить его растворимость в г на 100 мл воды (величинаs , приводимая в справочной литературе) и определить возможности выпадения вещества в осадок.

Для уравнения (1) взаимосвязь концентрации насыщенного раствора трудно растовримого вещества (С м, моль/л) с величиной ПР определяется следующим уравнением:

,

где n иm –стехиометричекие коэффициенты в ур. 1.

Задача 5. Концентрация насыщенного раствора (С м)Mg(OH) 2 равна 1,1 10 -4 моль/л. Записать выражение для ПР и вычислить его величину.

Решение: В насыщенном раствореMg(OH) 2 устанавливается равновесие между осадком и растворомMg(OH) 2 ↔Mg 2+ +2OH - , для которого выражение ПР имеет вид ПР = 2 . Зная концентрации ионов, можно найти его численное значение. Учитывая полную диссоциацию

Mg(OH) 2, концентрация его насыщенного раствора С м = = 1,110 -4 моль/л, а = 2 = 2,210 -4 моль/л. Следовательно, ПР= 2 =1,1. 10 -4 (2,2 10 -4) 2 = 5,3. 10 -12 .

Задача 6. Вычислить концентрацию насыщенного раствора и ПР хромата серебра, если в 0,5 л воды растворяется 0,011 г соли.

Решение: Для определения молярной концентрации насыщенного раствораAg 2 CrO 4 воспользуемся формулойC M = , гдеm - масса растворенного вещества (г), М- молярная масса (г/моль),V - объем раствора (л). М(Ag 2 CrO 4 ) =332 г/моль. См =9,48 . 10 -5 моль/л. Растворение хромата серебра (I) сопровождается полной (=1) диссоциацией соли:Ag 2 CrO 4 ↔ 2Ag + +CrO 4 2- , ПР= 2 , где = С м = 9,48 . 10 -5 моль/л, а = 2 =1,89610 -4 .

Таким образом ПР = (1,89610 -4) 2 (9,4810 -5) = 3,410 -12 .

Задача 7 . Можно ли приготовить растворы соли СаСО 3 с концентрациями СаСО 3 С 1 =10 -2 М и С 2 = 10 -6 М, если ПР СаСО 3 = 3,810 -9 .

Решение: Зная величину ПР, можно рассчитать концентрацию

насыщенного раствора соли и, сравнив ее с предлагаемыми

концентрациями, сделать вывод о возможности или невозможности приготовления растворов. Растворение карбоната кальция протекает по схеме CaCO 3 ↔Ca 2+ +CO 3 2- В данном уравненииn = m = 1, тогда

=
≈ 6,2 10 -5 моль/л,

С 1 > С м – раствор приготовить нельзя, так как будет выпадать осадок;

С 2 < С м – раствор приготовить можно.

Реакции ионного обмена

Для растворов электролитов характерны реакции ионного обмена. Обязательным условием протекания таких реакций практически до конца является удаление из раствора тех или иных ионов вследствие:

1) образования осадка

FeSO 4 + 2 NaOH  Fe(OH) 2  + Na 2 SO 4 - молекулярное уравнение (МУ)

Fe 2+ +SO 4 2- +2Na + +2OH - Fe(OH) 2 +2Na + +SO 4 2- ионно-молекулярное уравнение (ИМУ).

Fe 2+ +2OH -  Fe(OH) 2  (ПР Fe (OH) 2 = 4,810 -16) – краткое ионно-молекулярное уравнение образования осадка;

2) выделение газа

Na 2 CO 3 + 2H 2 SO 4  H 2 CO 3 + 2NaHSO 4 (МУ)

2Na + +CO 3 2- + 2H + + 2HSO 4 -  H 2 C0 3 + 2Na + + 2HSO 4 - (ИМУ)

2H + + CO 3 2-  H 2 C0 3  H 2 O + C0 2  - ионно - молекулярное ур-е

образования летучего соединения.

3) образование слабых электролитов

а) простые вещества:

2KCN + H 2 SO 4 2HCN + K 2 SO 4 (МУ)

2K + + 2CN - + 2H + +SO 4 2-  2HCN + 2K + +SO 4 2- (ИМУ)

CN - +H + HCN(К д HCN = 7,8 10 -10) –ионно-молекулярное ур-е образования слабого электролитаHCN.

б) комплексные соединения:

ZnCl 2 + 4NH 3 Cl 2 (МУ)

Zn 2+ + 2Cl - +4NH 3  2+ + 2Cl - -(ИМУ)

Zn 2+ +4NH 3  2+ - краткое ионно-молекулярное уравнение образования комплексного катиона.

Встречаются процессы, при которых слабые электролиты или малорастворимые соединения входят в число исходных веществ и продуктов реакции. Равновесие в этом случае смещается в сторону образования веществ, имеющих наименьшую константу диссоциации или в сторону образования менее растворимого вещества:

А) NH 4 OH + HCl  NH 4 Cl + H 2 O (МУ)

NH 4 OH + H + + Cl -  NH 4 + + Cl - + H 2 O

NH 4 OH + H +  NH 4 + + H 2 O (ИМУ)

К д ( NH 4 OH) =1,8 10 -5 > К д ( H 2 O) =1,810 -16 .

Равновесие сдвинуто в сторону образования молекул воды.

Б) AgCl + NaI AgI + NaCl (МУ)

AgCl + Na + +I - AgI+ Na + +Cl -

AgCl + I - AgI + Cl - (ИМУ)

ПР AgCl =1,7810 -10 > ПР AgI =8,310 -17 .

Равновесие сдвинуто в сторону образования осадка AgI.

В) Могут встречаться процессы, в уравнениях которых есть и малорастворимое соединение и слабый электролит

MnS + 2HCl  MnCl 2 + H 2 S (МУ)

MnS + 2H + +2Cl -  Mn 2+ + 2Cl - + H 2 S

MnS + 2 H +  Mn 2+ + H 2 S (ИМУ)

ПР MnS =2,510 -10 ; =
=1,58.10 -5 моль/л

K д H 2 S = K 1 K 2 = 610 -22 ; =
=5,4.10 -8 моль/л

Связывание ионов S 2- в молекулыH 2 Sпроисходит полнее, чем вMnS, поэтому реакция протекает в прямом направлении, в сторону образованияH 2 S

Гидролиз солей

Гидролиз является результатом поляризационного взаимодействия ионов соли с их гидратной оболочкой. Гидролиз - это обменная реакция в растворе между молекулами воды и ионами соли. В результате гидролиза, благодаря образованию слабого электролита (слабой кислоты или слабого основания), изменяется ионное равновесие Н 2 О⇄Н + + ОН - из-за связывания Н + или ОН - и изменяется рН-среды. Гидролизу подвергаются соли, в состав которых входят ионы слабой кислоты или слабого основания. Соли, образованные ионами сильной кислоты и сильного основания, гидролизу не подвергаются (NaCl,Na 2 SO 4). Продуктами гидролиза могут быть слабые электролиты, малодиссоциирующие, труднорастворимые и летучие вещества. Гидролиз - стадийная реакция, в случае многозарядного иона число стадий равно его заряду. Гидролизу покатиону подвергаются соли, образованные анионами сильной кислоты и катионами слабого основания. Например, к слабым основаниям относятся гидроксидыp - иd -металлов (К д 10 -4), а также гидроксид аммония.

Хлорид цинка - соль, образованная слабым основанием Zn(OH) 2 и сильной кислотой HCl. Катион цинка имеет заряд 2+, поэтому гидролиз будет проходить в две ступени:

Zn 2+ + HOH ↔ ZnOH + + H + I ступень

ZnOH + +HOH↔ Zn(OH) 2 +H + IIступень

В результате этого взаимодействия возникает избыток ионов Н + ([Н + ]  [ОН - ]) , раствор подкисляется (рН<7).

Гидролиз по аниону . Данный тип гидролиза характерен для солей, образованных анионами слабой кислоты (К д 10 -3) и катионами сильного основания (K д >10 -3). Рассмотрим гидролиз карбоната калия - соли, образованной слабой угольной кислотойH 2 CO 3 (K д I = 4,5. 10 -7) и сильным основаниемKOH, карбоксо-анион имеет заряд (2-). Гидролиз протекает в две ступени:

CO 3 2- +H 2 O↔HCO 3 - +OH - Iступень

HCO 3 - +H 2 O↔H 2 CO 3 +OH - IIступень

В этом случае высвобождаются ионы ОН - ([Н + ]  [ОН - ]) - раствор подщелачивается (рН >7).

Необратимый гидролиз . Соли, образованные слабым основанием и слабой кислотой, гидролизуются по катиону и аниону. Результат гидролиза будет зависить от значения К д основания и кислоты. Рассмотрим гидролиз фторида аммония - соли, образованной слабым

основанием NH 4 OH (К д =1,8 . 10 -5) и слабой кислотой HF (К д = 6,8 . 10 -4):

NH 4 F + HOH  NH 4 OH + HF

В этом случае К д ( NH 4 OH)  К д ( HF) , следовательно, гидролиз (в основном) пойдет по катиону и реакция среды будет слабокислой.

На уроке будут рассмотрены условия протекания реакций ионного обмена до конца. Чтобы лучше понять, какие необходимо соблюдать условия протекания реакций ионного обмена до конца, будет проведено повторение, что собой представляют эти реакции, их сущность. Приводятся примеры на закрепление этих понятий.

Тема: Химическая связь. Электролитическая диссоциация

Урок: Условия протекания реакций ионного обмена до конца

Если попробовать провести реакцию взаимодействия гидроксида натрия с хлоридом калия, то реакция не произойдет. В реакции обмен ионами происходит, только продукты не образуются. Рассмотрим причины этого. Образующиеся в результате взаимного притяжения вещества, могут диссоциировать.

1. Реакции, ионного обмена, идущие с образованием осадка.

Ранее были рассмотрены уравнения реакций, в результате которых образовывался осадок.

Все эти реакции относились к реакциям ионного обмена. Можно сделать вывод, что одним из условий протекания реакции ионного обмена до конца является образование осадка.

BaCl 2 + Na 2 CO 3 → BaCO 3 ↓ + 2NaCl.

Ba 2+ +2Cl - + 2Na + + CO 3 2- →BaCO 3 ↓ + 2Na + +2Cl - полное ионное уравнение

Ba 2+ + CO 3 2- → BaCO 3 ↓ сокращенное ионное уравнение.

Запишем еще одно уравнение реакции, приводящее к образованию осадка.

СuSO 4 + 2NaОН→ Cu(OH) 2 ↓ + Na 2 SO 4

Сu 2+ + SO 4 2- +2Na + + 2ОН - → Cu(OH) 2 ↓ + 2Na + + SO 4 2- полное ионное уравнение

Сu 2+ + 2ОН - → Cu(OH) 2 ↓ сокращенное ионное уравнение.

Вывод: реакции ионного обмена проходят до конца, если в результате получается осадок.

Рис. 1. Реакция нейтрализации ()

Рассмотрим реакцию нейтрализации гидроксида натрия с соляной кислотой.

NaOH + HCl → NaCl+ H 2 O

Na + + OH - + H + + Cl - →Na + + Cl - + H 2 O полное ионное уравнение

OH - + H + → H 2 O сокращенное ионное уравнение

Эта реакция протекает до конца, потому что в результате получается малодиссоциирующее вещество - вода.

Вывод: реакции ионного обмена проходят до конца, если в результате получается малодиссоциирующее вещество.

Вы знаете, что карбонат кальция хорошо взаимодействует с соляной кислотой.

СаCO 3 +2HCl → СaCl 2 + H 2 O + CO 2

СаCO 3 +2H + + 2Cl - → Са 2+ +2Cl - + H 2 O + CO 2 полное ионное уравнение

2H + + СаCO 3 → Са 2+ + H 2 O + CO 2 сокращенное ионное уравнение.

В результате этой реакции получается углекислый газ, которой образуется при разложении слабой угольной кислоты. Обратите внимание, что карбонат кальция - это нерастворимое вещество, на ионы не распадается. В полном ионном уравнении записываем в виде ионов только хлороводород и хлорид кальция. Остальные формулы остаются без изменения, так как эти вещества не подвергаются .

Вывод: реакции ионного обмена проходят до конца, если в результате её получается газ.

На этом уроке вы рассмотрели условия протекания реакций ионного обмена до конца. Реакции ионного обмена проходят до конца, если в результате получается осадок, малодиссоциирующее вещество или газ.

1. Рудзитис Г.Е. Неорганическая и органическая химия. 9 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. М.: Просвещение. 2009 г.119с.:ил.

2. Попель П.П.Химия:8 кл.: учебник для общеобразовательных учебных заведений/П.П. Попель, Л.С.Кривля. -К.: ИЦ «Академия»,2008.-240 с.: ил.

3. Габриелян О.С. Химия. 9 класс. Учебник. Издательство: Дрофа.:2001. 224с.

1. №№ 3,4,5 (с.22) Рудзитис Г.Е. Неорганическая и органическая химия. 9 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. М.: Просвещение. 2009 г.119с.:ил.

2. Что наблюдаете при изготовлении теста, когда к соде добавляете уксус? Напишите уравнение реакции.

3. Почему в чайнике образуется накипь? Как её удалить? Напишите уравнения реакций.

Цели:

  • учащиеся должны усвоить знания о реакциях ионного обмена и условиях их протекания.
  • продолжить развивать умения написания уравнений диссоциаций веществ;
  • работать с таблицей растворимости;
  • развивать логическое мышление при распознавании электролитов и неэлектролитов, в сравнении, наблюдении; развивать практические умения и навыки, делать выводы;
  • составлять уравнения реакций в молекулярном, полном ионном и сокращенном ионном видах.

Методы и методические приёмы: словесно-наглядные, эвристические, групповая фронтальная лабораторная работа.

Оборудование:

  • на столах учащихся: H 2 SO 4 , BaCl 2 , Na 2 CO 3, фенолфталеин, NaOH, 4 шприца, планшетка, таблица растворимости, таблица для заполнения.
  • учителю: H 2 SO 4 , BaCl 2 , Na 2 CO 3, фенолфталеин, NaOH, 3 пробирки, в 2-х емкостях: сода и соль, вода, уксусная кислота.

Ход урока

1. Организационный момент.

2. Постановка цели.

Учитель . Ребята, представим, что у вас на кухне в 2-х одинаковых банках без этикеток находятся соль и сода. Как распознать эти два вещества, не пробуя на вкус?

Учитель. Чтобы это узнать, нам необходимо познакомиться с реакциями ионного обмена, определить условия их протекания, научиться писать полные, сокращенные ионные уравнения. Что бы лучше понять механизм реакций ионного обмена, давайте вспомним, какие вещества называются электролитами.

Ученик. Электролиты – это вещества, которые в расплавах и растворах проводят электрический ток.

Учитель. Почему электролиты в растворах и расплавах проводят электрический ток?

Ученик. Электролиты проводят электрический ток, потому что в растворах и расплавах образуются ионы.

Учитель. Что такое электролитическая диссоциация?

Ученик. Процесс распада электролита на ионы называется электролитической диссоциацией.

Учитель. Напишем уравнения диссоциации различных веществ. (К доске 3 ученика работать по карточкам):

  • Карта №1. Написать суммарные уравнения диссоциации для веществ: H 2 SO 4, HCl.
  • Карта №2. Написать суммарные уравнения диссоциации для веществ: Na 2 CO 3, BaCl 2.
  • Карта № 3. Написать суммарные уравнения диссоциации для веществ: NaOH, Ba(OH) 2

Учитель. Задание классу : выбрать из данного перечня веществ электролиты и неэлектролиты.

KCl, CuO, CuSO 4, Cu(OH) 2 , BaSO 4, K 2 SO 4 . (с листа).

Для электролитов написать суммарные уравнения диссоциации. (у доски).

Учитель. Проверим записи на доске.

Учитель. Ребята, назовите, из каких ионов образованно нерастворимое вещество BaSO 4 ?

Ученик . Сульфат бария образуется из ионов бария и сульфат-ионов.

Учитель. Назовите вещества, используя таблицу растворимости, растворы которых содержат ион Ba 2+ и SO 4 2- ?

Ученик. Например, хлорид бария и серная кислота.

Учитель. Запишем уравнение реакции между H 2 SO 4 и BaCl 2 (ученик у доски).

Ba Cl 2 + H 2 SO 4 = BaSO 4 + 2HCl

Учитель. Реакции, протекающие в растворах электролитов, называются реакциями ионного обмена. Чтобы выяснить при каких условиях протекают реакции ионного обмена, проведём лабораторную работу:

Цель: Ознакомиться с условиями протекания таких реакций. (запись в тетрадь)

Опыт № 1. Получение BaSO 4. (вместо опыта возможно использование фрагмента урока из “виртуальной школы Кирилла и Мефодия” 9 класс урок № 6)

Учитель одновременно делает у доски.

Учитель комментирует: к раствору BaCl 2 приливаем раствор H 2 SO 4. Что наблюдаем?

Ученик: Выпал белый осадок.

Учитель: Запишем полное ионное уравнение, для этого записываем, какие ионы были в растворах взятых веществ и какие вещества образовались.

2H 1+ + SO 4 2- + Ba 2+ +2Cl 1- - > BaSO 4v + 2H 1+ +2Cl 1-

Это полное ионное уравнение.

Если сократить правую и левую часть уравнения на одинаковые ионы, то получим сокращенное ионное уравнение.

SO 4 2- + Ba 2+ -> BaSO 4v

Обсуждение:

Вопросы классу:

  • Какие ионы содержались в растворе до реакции?
  • Какие ионы оставались в растворе после реакции?
  • В чем сущность данных реакций?

Беседа с классом: обговариваем, что сущность реакции состоит в том, что произошло связывание ионов Ba 2+ и SO 4 2- .

Это уравнение показывает сущность данной реакции.

Опыт №2. Получение углекислого газа.

Учитель комментирует: к раствору Na 2 CO 3 прильем раствор H 2 SO 4. (1 ученик записывает реакцию на доске)

Na 2 CO 3 + H 2 SO 4 = Na 2 SO 4 + H 2 O + CO 2

Что наблюдаем?

Ученик: Выделение пузырьков газа.

Учитель записывает полное ионное уравнение и сокращённое ионное уравнение.

2Na 1+ +CO 3 2- +2H 1+ +SO 4 2- - >2Na 1+ + SO 4 2- + H 2 O+ CO 2

CO 3 2- +2H 1+ -> H 2 O+ CO 2

Опыт №3. Образование H 2 O (малодиссоциирующего вещества).

Учитель комментирует: к раствору NaOH добавим 1-2 капли фенола фталеина, раствор окрасился в малиновый цвет, добавим H 2 SO 4. (1 ученик записывает реакцию на доске)

2 NaOH + H 2 SO 4 = Na 2 SO 4 + 2 H 2 O

Что наблюдаем?

Ученик. Раствор обесцветился.

Учитель. Запишем полное ионное уравнение и сокращённое ионное уравнение на доске (1 ученик).

2Na 1+ +2OH 1- +2H 1+ + SO 4 2- ->2Na 1+ + SO 4 2- + 2H 2 O

2OH 1- +2H 1+ ->2H 2 O

Условия протекания реакций

Между растворами электролитов (заполняет ученик).

Примеры реакций ионного обмена.
1. Na 2 СO 3 +СaCl 2 =СaCO 3 +2NaCl

2Na + + СO 3 2- +Сa 2+ + 2Сl - = СaCO 3 +2Na + + 2Cl -

Сa 2+ + СO 3 2- = СaСO 3

2. K 2 СO 3 +2HCl =2KCl+H 2 O+CO 2

2K + + СO 3 2- +2H + +2Cl - =2K + +2Cl - +H 2 O+CO 2

СO 3 2- +2H + = СO 2 ^+H 2 O

3. NaOH+HNO 3 = NaNO 3 +H 2 O

Na + +OH - +H + +NO 3 =Na + +NO 3 - + H 2 O

H + + OH - =H 2 O

Учитель: Ребята, мы провели реакции ионного обмена. Сделаем вывод: при каких условиях реакции ионного обмена идут до конца? (заполним предложенные таблицы)

Ученик: Реакции ионного обмена идут до конца, если в результате образуется осадок, выделяется газ, образуется малодиссоциирующее вещество, например вода.

Учитель: Вернёмся к нашей проблеме. Предложите способ распознания соли(NaCl) и соды (Na 2 CO 3).

Ученик: К этим веществам нужно добавить кислоту. В какой ёмкости будет наблюдаться выделение газ, там будет сода.

Закрепление материала:

Задание у доски: 1 Выбрать из данного списка реакции идущие до конца, (один ученик)

NaOH+ NaCl -> NaCl+ H 2 O

AgNO 3 + NaCl ->NaNO 3 +AgCl

CuCl 2 +2NaOH ->Cu(OH) 2 +2NaCl

KNO 3 +LiCl ->KCl+LiNO 3

Дано:

Полное ионное уравнение.

Fe 3+ +3Cl - +3Na + +3OH - = Fe(OH) 3 +3Na + +3Cl -

Напишите соответственно ему молекулярное и сокращенное ионное уравнение.

Учитель. Подведём итог нашему уроку: С какими реакциями мы познакомились на уроке?

Ученик. Мы познакомились с реакциями ионного обмена.

Учитель . При каких условиях возможно протекание данных реакций до конца.

Ученик. Реакции ионного обмена идут до конца, если выпадает осадок, выделяется газ, образуется малодиссоциирующее вещество.

Учитель. Задание на дом: §37 упр. 4, 5.

Литература.

  1. Габриелян О.С. Химия. 8 класс: Дрофа, 1999.
  2. “Виртуальная школа Кирилла и Мефодия” Уроки химии 8-9 класс, 2004.

Опыт №1

Налейте в пробирку 1-2 мл раствора сульфата меди (II) и добавьте немного раствора гидроксида натрия.

Вывод:__________________________________________________________________________________________________________________________________________________________________________________________________________________

Опыт №2.

Налейте в пробирку 1-2 мл раствора сульфата алюминия и добавьте немного раствора нитрата бария.

Запишите наблюдения:____________________________________________

Составьте уравнение реакции в молекулярном, полном ионном и сокращенном ионном виде: ________________________________________________________________________________________________________________________________________________________________________________________________________________________

Вывод:___________________________________________________________________________________________________________________________________________________________________________________________________________________________

Реакции, идущие с выделением газа

Опыт №3

Налейте в пробирку 1-2 мл раствора сульфида натрия и добавьте столько же раствора серной кислоты.

Запишите наблюдения:____________________________________________

Составьте уравнение реакции в молекулярном, полном ионном и сокращенном ионном виде: ________________________________________________________________________________________________________________________________________________________________________________________________________________________

Вывод:__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Опыт № 4

Налейте в пробирку 1-2мл раствора карбоната натрия и добавьте столько же раствора серной кислоты.

Запишите наблюдения:__________________________________________

Составьте уравнение реакции в молекулярном, полном ионном и сокращенном ионном виде: ________________________________________________________________________________________________________________________________________________________________________________________________________________________ Вывод:__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________


Реакции, идущие с образованием малодиссоциирующего

Вещества.

Опыт №5

Налейте в пробирку 1-2 мл раствора гидроксида натрия и добавьте две-три капли фенолфталеина. Затем прилейте раствор серной кислоты.

Запишите наблюдения: ____________________________________________

Составьте уравнение реакции в молекулярном, полном ионном и сокращенном ионном виде: ________________________________________________________________________________________________________________________________________________________________________________________________________________________ Вывод:______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Экспериментальные задания. Растворить образовавшийся в опыте № 1 осадок, и записать при этом происходящие реакции в молекулярном, ионном и сокращенном ионном виде:

Запишите наблюдения: ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Составьте уравнение реакции в молекулярном, полном ионном и сокращенном ионном виде: _________________________________________________________________________________________________________________________________________________________________________________________________________________


Контрольные вопросы

1. Какие реакции называются ионными?

2. В каких случаях реакции ионного обмена протекают до конца?

3. В каком направлении протекают реакции ионного обмена?

4. Объясните, почему в опытах №1 и №2 образовались осадки?

5. Объясните, почему в опытах №3 и №4 выделились газообразные вещества?

6. Какими еще кислотами можно было подействовать на растворы сульфита натрия и карбоната натрия (в опытах №3 и №4), чтобы получить аналогичные результаты?

7. Объясните, почему в опыте №5 произошло обесцвечивание? Как называется реакция между щелочью и сильной кислотой?

8. В каких случаях реакции ионного обмена в растворах электролитов являются необратимыми?

9.В каких случаях реакции ионного обмена в растворах электролитов являются обратимыми?

10.В каких случаях реакции ионного обмена в растворах электролитов не протекают?

12.Формулы каких веществ в ионных уравнениях записывают в виде ионов?

13.Формулы каких веществ в ионных уравнениях записывают в виде молекул?

Литература

Ерохин Ю.М. «Химия» Москва: Академа, 2005г. Гл 6, стр. 74 - 80.


Лабораторное занятие №2

«Испытание растворов солей индикаторами.

Гидролиз солей»

Цель: отработка практических навыков определения среды раствора соли, составления уравнений реакций гидролиза солей по первой стадии.

Теория

Вода по отношению к веществам может быть растворителем, реагентом. В том случае, когда вода выступает средой реакции и реагентом, говорят о процессе гидролиза.

Гидролиз солей - реакция обменного взаимодействия соли с водой, в результате которой образуется слабый электролит.

При гидролизе, как правило, степени окисления элементов сохра­няются, на основании чего и составляются уравнения гидролиза:

МAn + HOH = MOH + HАn

Соль основание кислота

Гидролизу не подвергаются:

1) соли, нерастворимые в воде;

2) растворимые соли, образованные сильной кислотой и сильным основанием.

(Например, NaCl, K 2 SО 4 , LiNО 3 , BaBr 2 , CaI 2 и т. д.).

Гидролизу подвергаются:

1) растворимые соли, в состав которых входит хотя бы один сла­бый ион (Na 2 C0 3 , CuS0 4 , NH 4 F и т. д.).

Это обратимый гидролиз .

2) Соли, напротив которых в таблице растворимости стоит про­черк, необратимо гидролизируются:

Al 2 S 3 + 6Н 2 О ® 2Al(OH) 3 ¯+ 3H 2 S­

При составлении уравнений обратимого гидролиза по первой стадии следует при­держиваться следующего алгоритма:

Образец №1. Соль образована слабой кислотой и сильным основанием

Na 2 CО 3 Û 2Na + + CО 3 2-

слабый анион


CО 3 2- + Н + ОН - Û НСО 3 - +ОН -

4. Определить среду раствора: ОН - - щелочная среда, Н + - кислая среда, отсутствие Н + и ОН - нейтральная.

Это случай гидролиза по аниону .

Образец №2. Соль образована сильной кислотой и слабым основанием

1. Записать уравнение диссоциации соли. FeCl 3 Û Fe 3+ +3Cl -

слабый катион

2. Выбрать слабый ион: катион или анион.

3. Записать его взаимодействие с водой. Fe 3+ + Н + ОН - Û Fe ОН 2+ +Н +

4. Определить среду раствора кислая

Это случай гидролиза по катиону .

Если соль образована слабой кислотой и слабым основанием (например, NH 4 NO 2), то проходит гидролиз и по катиону и по аниону.

Гидролиз солей, образованных многоосновными кислотами и многокислотными основаниями идет ступенчато. Каждая последующая стадия идет в меньшей степени, чем предыдущая.

Порядок выполнения работы

Оборудование и реактивы:

штатив с пробирками; универсальная индикаторная бумажка, растворы солей

сульфата натрия, нитрата меди (II), сульфида натрия.

Задание №1 Испытание растворов солей индикатором. Налейте в пробирку немного раствора каждой соли, а затем испытайте действие растворов этих солей на универсальной индикаторной бумажке. Занесите данные в таблицу, укажите среду раствора знаком «+».

Сделайте вывод: ______________________________________________________________________________________________________________________________________________________________________________________________________________.

Задание №2. Напишите уравнения реакций гидролиза соли, раствор которой имел кислую среду.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Задание №3. Напишите уравнения реакций гидролиза соли, раствор которой имел щелочную среду.

_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________


Контрольные вопросы

1. Что называется гидролизом соли?

2. В чем сущность гидролиза солей?

3. Какие соли подвергаются гидролизу?

4. Какие соли гидролизуются по аниону? Почему? Приведите примеры таких солей.

5. Какие соли гидролизуются по катиону? Почему? Приведите примеры таких солей.

6. Какие соли гидролизуются и по катиону и по аниону? Приведите примеры таких солей.

7. Для каких солей гидролиз протекает необратимо? Приведите примеры таких солей.

8. Какие соли не гидролизуются? Почему?

9. Какие соли гидролизуются ступенчато? Приведите примеры таких солей.

Литература Ерохин Ю.М. «Химия» Москва: Академа, 2003г. Гл 6, стр. 82 - 85.

Первые химические преобразования, которые мы рассмотрим – это реакции ионного обмена (РИО).

Реакция ионного обмена (РИО) – это реакции, протекающие между растворами электролитов. В хоте этих реакций электролиты обмениваются ионами:

Почему вдруг электролиты решают обменяться своими ионами? Чтобы это произошло, нужно, чтобы образовался газ, осадок (нерастворимое вещество) или же просто слабый электролит.

Если слить вместе раствор хлорида калия и раствор нитрата серебра:

В одном растворе одновременно оказываются четыре иона: K + , Cl – , Ag + , NO 3 – . Ионы не могут находиться в одном растворе (см. таблицу растворимости: AgCl – нерастворимое вещество):

Ag + + Cl – → AgCl↓

Поэтому реакция идет до конца.

«Обычная» запись уравнения:

Называется уравнением в молекулярном виде . Так как записываются формулы молекул, не обозначаются взаимодействия ионов.

А вот если мы распишем каждый электролит в ионном виде (что более точно отображает действительность, ведь именно в виде отдельных ионов электролиты существуют в растворе):

Мы получим полное ионное уравнение . Оно отражает, что происходит с ионами в ходе реакции. Какие ионы объединяются, какие остаются в свободном виде в растворе.

А если мы запишем отдельно процесс того, как ионы «не ужились» в растворе и объединились:

А вот если добавить к раствору NaCl раствор CuSO 4:

Нет ионов, которые могут образовать осадок, газ или слабый электролит: ионы остаются неизмененном виде в растворе. Реакция не может пройти до конца.

Всего три условия протекания реакции ионного обмена до конца:

  1. Образование осадка
  2. Выделение газа
  3. Образование слабого электролита

Берем любые два электролита: если соблюдается одно из этих условий – значит реакция между ними протекает.

Разберем примеры .

  1. Образование осадка.

Например, взаимодействие сульфата калия и хлорида бария.

  1. Выделение газа.

Газом может быть, например, сульфид водорода (чаще его называют сероводородом) – H 2 S. Водный раствор этой кислоты вам уже знаком, под названием сероводородная кислота. Когда H 2 S образуется в результате реакции – то он не успевает растворяться и выделяется в виде газа.

  1. Образование слабого электролита.

Ни газ, ни осадок, а просто слабодиссоциирующее вещество – слабый электролит. Таким слабым электролитом может быть слабая кислота или вода.

Золотая пятерка неожиданных продуктов.

  1. Гидроксид серебра (AgOH)

Что образуется при взаимодействии нитрата серебра и гидроксида натрия?

Смотрим в таблицу растворимости: и видим, что гидроксид серебра не существует (прочерк «–» в квадратике)

Оксид серебра (Ag 2 O) – это осадок – нерастворимое вещество.

  1. Гидроксид ртути (II) (Hg(OH) 2)

Та же история, что и с гидроксидом серебра.

Оксид ртути (HgO) – это тоже нерастворимое вещество (осадок).

Разберем, например, взаимодействие гидроксида калия и нитрата ртути (II).

  1. Гидроксид аммония (NH 4 OH)

Совру, если скажу, что это соединение не существует. Оно существует, но крайне нестабильно. И тоже разлагается в момент получение на аммиак (NH 3) и воду. Аммиак (NH 3) – это газ.

Аммиак образуется при взаимодействии соли аммония с щелочью:

  1. Угольная кислота (H 2 CO 3)

Та же ситуация, что и с гидроксидом аммония. Эта кислота разлагается моментально на соответствующий кислотный оксид (CO 2) и воду. Оксид углерода (IV) CO 2 так же называют углекислым газом.

Разберем взаимодействие карбоната калия и соляной кислоты.

  1. Сернистая кислота (H 2 SO 3)

Сернистая кислота – это сестра угольной кислоты.

SO 2 – это газ, его называют сернистым (по названию соответствующей кислоты).

N.B. При написании реакции ионного обмена придерживайтесь следующих правил:

  1. Всегда сверяйте растворимость солей по таблице (растворимости). Растворимые основания, как говорилось ранее, нужно запомнить. Сильные кислоты – сильные электролиты тоже нужно знать наизусть.
  2. Если образуется малорастворимый продукт (обозначается как «М» в таблице растворимости), то в качестве исходных веществ нужно использовать довольно сильные электролиты, причем в достаточно высокой концентрации.